More than 90\% of colorectal cancer is gradually transformed from colorectal polyps. In clinical practice, precise polyp segmentation provides important information in the early detection of colorectal cancer. Therefore, automatic polyp segmentation techniques are of great importance for both patients and doctors. Most existing methods are based on U-shape structure and use element-wise addition or concatenation to fuse different level features progressively in decoder. However, both the two operations easily generate plenty of redundant information, which will weaken the complementarity between different level features, resulting in inaccurate localization and blurred edges of polyps. To address this challenge, we propose a multi-scale subtraction network (MSNet) to segment polyp from colonoscopy image. Specifically, we first design a subtraction unit (SU) to produce the difference features between adjacent levels in encoder. Then, we pyramidally equip the SUs at different levels with varying receptive fields, thereby obtaining rich multi-scale difference information. In addition, we build a training-free network "LossNet" to comprehensively supervise the polyp-aware features from bottom layer to top layer, which drives the MSNet to capture the detailed and structural cues simultaneously. Extensive experiments on five benchmark datasets demonstrate that our MSNet performs favorably against most state-of-the-art methods under different evaluation metrics. Furthermore, MSNet runs at a real-time speed of $\sim$70fps when processing a $352 \times 352$ image. The source code will be publicly available at \url{https://github.com/Xiaoqi-Zhao-DLUT/MSNet}. \keywords{Colorectal Cancer \and Automatic Polyp Segmentation \and Subtraction \and LossNet.}


翻译:在临床实践中,精确的聚分解为早期检测直肠癌提供了重要信息。因此,对病人和医生来说,自动聚分解技术都非常重要。大多数现有方法都基于Ushape结构,并使用元素添加或连接,以在解码器中逐渐融合不同层次的特征。但是,这两个操作都很容易生成大量多余的信息,这将削弱不同级别特性之间的互补性,从而导致多级功能的不准确本地化和模糊的边缘。为了应对这一挑战,我们建议从结肠镜图像中建立多级减分网络(MSNet)到部分聚分解。具体地说,我们首先设计一个减分单位(SU),以产生相邻级别在解码器中的差异。然后,我们用金字塔把SUPA安装在不同级别,从而获得丰富的多级差异信息。此外,我们建立了一个“LossNet”培训网络,以全面监督从底层到顶层的多级的聚解码源数据。MISNet运行到顶层, 最高级的IMO-dealal-dealalalal-dealalalal-dealalalalal ASal ASal 数据,然后在5 IMMS-deal-deal-deal-deal-deal deal deal deal demodal ASdeal AS dealdaldal ASdeal AS deal dealdal dealdaldaldald dass sal 。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
专知会员服务
32+阅读 · 2021年6月12日
专知会员服务
61+阅读 · 2020年3月19日
专知会员服务
110+阅读 · 2020年3月12日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
50+阅读 · 2020年2月26日
【ICLR-2020】网络反卷积,NETWORK DECONVOLUTION
专知会员服务
39+阅读 · 2020年2月21日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
语义分割+视频分割开源代码集合
极市平台
35+阅读 · 2018年3月5日
已删除
将门创投
5+阅读 · 2017年11月20日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
UPSNet: A Unified Panoptic Segmentation Network
Arxiv
4+阅读 · 2019年1月12日
Arxiv
5+阅读 · 2018年3月30日
Arxiv
3+阅读 · 2018年3月5日
VIP会员
相关资讯
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
语义分割+视频分割开源代码集合
极市平台
35+阅读 · 2018年3月5日
已删除
将门创投
5+阅读 · 2017年11月20日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员