Joint registration of a stack of 2D histological sections to recover 3D structure (3D histology reconstruction) finds application in areas such as atlas building and validation of in vivo imaging. Straighforward pairwise registration of neighbouring sections yields smooth reconstructions but has well-known problems such as banana effect (straightening of curved structures) and z-shift (drift). While these problems can be alleviated with an external, linearly aligned reference (e.g., Magnetic Resonance images), registration is often inaccurate due to contrast differences and the strong nonlinear distortion of the tissue, including artefacts such as folds and tears. In this paper, we present a probabilistic model of spatial deformation that yields reconstructions for multiple histological stains that that are jointly smooth, robust to outliers, and follow the reference shape. The model relies on a spanning tree of latent transforms connecting all the sections and slices, and assumes that the registration between any pair of images can be see as a noisy version of the composition of (possibly inverted) latent transforms connecting the two images. Bayesian inference is used to compute the most likely latent transforms given a set of pairwise registrations between image pairs within and across modalities. Results on synthetic deformations on multiple MR modalities, show that our method can accurately and robustly register multiple contrasts even in the presence of outliers. The 3D histology reconstruction of two stains (Nissl and parvalbumin) from the Allen human brain atlas, show its benefits on real data with severe distortions. We also provide the correspondence to MNI space, bridging the gap between two of the most used atlases in histology and MRI. Data is available at https://openneuro.org/datasets/ds003590 and code at https://github.com/acasamitjana/3dhirest.
翻译:用于恢复 3D 结构 的 2D 直系图层联合注册 。 2D 直系部分联合注册可以 恢复 3D 结构 ( 3D 直系重建 ), 注册通常不准确, 因为对比差异和组织( 包括折叠和眼泪等手工艺品) 的高度非线性扭曲。 在本文中, 我们展示了空间变形的概率性模型, 产生多层直系血迹的重建, 但却有众所周知的问题, 比如香蕉效应( 曲线结构的冲击 ) 和 z- Shift 。 虽然这些问题可以通过外部线性一致的参考( 如磁共振动图像 ) 来缓解, 但是由于对比差异和结构的高度非线性扭曲性扭曲, 包括折叠和眼泪等。 在本文中, 我们展示了一种空间变形模型的概率模型, 显示在双层图像中 。 Bayeserformillal deformillal discoal 上, 显示他使用的一种最深层数据的方式, 显示他在双层变的图像的变型模型。 Baymodal deal deal deal dal daldaldaldaldaldaldal dalation 。