This paper presents a novel color scheme designed to address the challenge of visualizing data series with large value ranges, where scale transformation provides limited support. We focus on meteorological data, where the presence of large value ranges is common. We apply our approach to meteorological scatterplots, as one of the most common plots used in this domain area. Our approach leverages the numerical representation of mantissa and exponent of the values to guide the design of novel "nested" color schemes, able to emphasize differences between magnitudes. Our user study evaluates the new designs, the state of the art color scales and representative color schemes used in the analysis of meteorological data: ColorCrafter, Viridis, and Rainbow. We assess accuracy, time and confidence in the context of discrimination (comparison) and interpretation (reading) tasks. Our proposed color scheme significantly outperforms the others in interpretation tasks, while showing comparable performances in discrimination tasks.
翻译:本文提出了一个新的颜色方案,旨在应对具有大值范围的数据系列的可视化挑战,规模变换提供了有限的支持。我们侧重于气象数据,因为有大量值变换是常见的。我们把气象散射点作为这个领域最常用的地块之一,对气象散射点采用我们的方法。我们的方法利用曼蒂萨的数字代表性和数值的推理来指导新的“被遗忘的”颜色方案的设计,能够强调数量差异。我们的用户研究评估了在气象数据分析中使用的新设计、艺术颜色尺度的状况和有代表性的颜色方案:Coloracrafter、Viridis和Rainbow。我们评估了在歧视(比较)和解释(阅读)任务方面的准确性、时间和信心。我们提议的颜色方案在解释任务方面大大优于其他人,同时显示歧视任务中的可比表现。