The rise of dockless bike-sharing systems has led to increased interest in using bike-sharing data for urban transportation and travel behavior research. However, few studies have focused on the individual daily mobility patterns, hindering their alignment with the increasingly refined needs of urban active transportation planning. To bridge this gap, this study presents a two-layer framework, integrating improved flow clustering methods and multiple rule-based decision trees, to mine individual cyclists' daily home-work commuting patterns from vast dockless bike-sharing trip data with users' IDs. The effectiveness and applicability of the framework is demonstrated by over 200 million dockless bike-sharing trip records in Shenzhen. Ultimately, based on the mining results, we obtain two categories of bike-sharing commuters (i.e., 74.38% of Only-biking commuters and 25.62% of Biking-with-transit commuters) and some interesting findings about their daily commuting patterns. For instance, lots of bike-sharing commuters live near urban villages and old communities with lower costs of living, especially in the central city. Only-biking commuters have a higher proportion of overtime than Biking-with-transit commuters, and the Longhua Industrial Park, a manufacturing-oriented area, having the longest average working hours (over 10 hours per day). Massive commuters utilize bike-sharing for commuting to work more frequently than for returning home, which is closely related to the over-demand for bike-sharing around workplaces during commuting peak. Overall, this framework offers a cost-effective way to understand residents' non-motorized mobility patterns. Moreover, it paves the way for subsequent research on fine-scale cycling behaviors that consider demographic disparities in socio-economic attributes.
翻译:暂无翻译