Bayesian optimization (BO) is a powerful paradigm for efficient optimization of black-box objective functions. High-dimensional BO presents a particular challenge, in part because the curse of dimensionality makes it difficult to define -- as well as do inference over -- a suitable class of surrogate models. We argue that Gaussian process surrogate models defined on sparse axis-aligned subspaces offer an attractive compromise between flexibility and parsimony. We demonstrate that our approach, which relies on Hamiltonian Monte Carlo for inference, can rapidly identify sparse subspaces relevant to modeling the unknown objective function, enabling sample-efficient high-dimensional BO. In an extensive suite of experiments comparing to existing methods for high-dimensional BO we demonstrate that our algorithm, Sparse Axis-Aligned Subspace BO (SAASBO), achieves excellent performance on several synthetic and real-world problems without the need to set problem-specific hyperparameters.


翻译:贝叶斯优化(BO)是高效优化黑箱目标功能的强大范例。 高维BO是一个特殊的挑战,部分原因是由于对维度的诅咒使得难以界定 -- -- 以及推断 -- -- 合适的代用模型类别。 我们争论说,在低轴轴对齐的子空间上定义的戈西亚进程代用模型在灵活性和面孔之间提供了有吸引力的折中。我们证明,我们依靠汉密尔顿·蒙特卡洛的推理方法,可以迅速识别与建立未知目标功能模型有关的稀疏亚空间,使样本效率高维度BO得以建立。在与现有高维BO方法相比的广泛一系列实验中,我们证明我们的算法,Sparse Axis-Axis-Asragable Subspspace BO(SAASBO),在几个合成和现实世界问题上取得了出色表现,而无需设定特定问题的超参数。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年8月5日
Arxiv
0+阅读 · 2021年8月4日
Arxiv
0+阅读 · 2021年8月3日
Arxiv
5+阅读 · 2020年12月10日
Arxiv
3+阅读 · 2018年1月31日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员