We consider the problem of dimensionality reduction for prediction of a target $Y\in\mathbb{R}$ to be explained by a covariate vector $X \in \mathbb{R}^p$, with a particular focus on extreme values of $Y$ which are of particular concern for risk management. The general purpose is to reduce the dimensionality of the statistical problem through an orthogonal projection on a lower dimensional subspace of the covariate space. Inspired by the sliced inverse regression (SIR) methods, we develop a novel framework (TIREX, Tail Inverse Regression for EXtreme response) relying on an appropriate notion of tail conditional independence in order to estimate an extreme sufficient dimension reduction (SDR) space of potentially smaller dimension than that of a classical SDR space. We prove the weak convergence of tail empirical processes involved in the estimation procedure and we illustrate the relevance of the proposed approach on simulated and real world data.
翻译:我们认为,预测一个目标值为Y=in\mathbb{R}美元时的维度减少问题将由一个共变矢量 $X\ in\mathbb{R ⁇ p$加以解释,特别侧重于风险管理特别关注的极值$Y的极端值,其一般目的是通过对共变空间的较低维度次空间进行正方位预测,减少统计问题的维度。我们受到反向回归法的启发,我们开发了一个新颖的框架(TREX, 反向回归法, 外向反应法的反向回归法),依靠一个适当的尾部有条件独立概念,以便估计一个比传统特别提款权空间规模小的极充分的维度减少空间。我们证明,估算程序所涉及的尾部经验过程没有很好地融合,我们展示了拟议方法在模拟和真实世界数据上的相关性。