In this paper, we study the classic submodular maximization problem subject to a group equality constraint under both non-adaptive and adaptive settings. It has been shown that the utility function of many machine learning applications, including data summarization, influence maximization in social networks, and personalized recommendation, satisfies the property of submodularity. Hence, maximizing a submodular function subject to various constraints can be found at the heart of many of those applications. On a high level, submodular maximization aims to select a group of most representative items (e.g., data points). However, the design of most existing algorithms does not incorporate the fairness constraint, leading to under- or over-representation of some particular groups. This motivates us to study the submodular maximization problem with group equality, where we aim to select a group of items to maximize a (possibly non-monotone) submodular utility function subject to a group equality constraint. To this end, we develop the first constant-factor approximation algorithm for this problem. The design of our algorithm is robust enough to be extended to solving the submodular maximization problem under a more complicated adaptive setting. Moreover, we further extend our study to incorporating a global cardinality constraint.


翻译:在本文中,我们研究了在非适应性和适应性环境下受群体平等制约的典型亚模块最大化问题,已经表明,许多机器学习应用的实用功能,包括数据总和、影响社交网络中的最大化以及个性化建议,都符合亚模块特性的特性。因此,在很多这些应用中,可以发现,将受各种制约的亚模块功能最大化是许多这些应用的核心。在高层次上,亚模块最大化的目的是选择一组最具代表性的项目(例如,数据点)。然而,大多数现有算法的设计并不包含公平性限制,导致某些特定群体代表不足或过多。这促使我们研究亚模块最大化问题与群体平等,目的是选择一组项目以最大限度地实现(可能非模块化的)亚模块效用功能,但受群体平等制约。为此,我们开发了第一个关于该问题的恒定要素近比值算法。我们的算法设计足够强大,足以解决亚模块最大化问题,在更复杂的适应性设置下,我们进一步扩展了我们的研究范围,以纳入一个更复杂的全球基础性调整。

0
下载
关闭预览

相关内容

不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
69+阅读 · 2022年7月11日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年12月15日
Arxiv
0+阅读 · 2022年12月14日
Adaptive Synthetic Characters for Military Training
Arxiv
46+阅读 · 2021年1月6日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员