We show that approximate graph colouring is not solved by any level of the affine integer programming (AIP) hierarchy. To establish the result, we translate the problem of exhibiting a graph fooling a level of the AIP hierarchy into the problem of constructing a highly symmetric crystal tensor. In order to prove the existence of crystals in arbitrary dimension, we provide a combinatorial characterisation for realisable systems of tensors; i.e., sets of low-dimensional tensors that can be realised as the projections of a single high-dimensional tensor.
翻译:我们显示近似图形颜色没有通过任何水平的等离整编程( AIP) 等级来解决。 为了确定结果, 我们将展示一个图蒙顶级的 AIP 等级的问题转化为构建一个高度对称晶体振幅的问题。 为了证明存在任意维度的晶体, 我们为可实现的 Exrons 系统提供了组合特性, 即可以作为单一高维抗拉预测而实现的一组低维抗拉。