Eternal domination is a dynamic process by which a graph is protected from an infinite sequence of vertex intrusions. In eternal distance-$k$ domination, guards initially occupy the vertices of a distance-$k$ dominating set. After a vertex is attacked, guards ``defend'' by each moving up to distance $k$ to form a distance-$k$ dominating set, such that some guard occupies the attacked vertex. The eternal distance-$k$ domination number of a graph is the minimum number of guards needed to defend against any sequence of attacks. The process is well-studied for the situation where $k=1$. We introduce eternal distance-$k$ domination for $k > 1$. Determining whether a given set is an eternal distance-$k$ domination set is in EXP, and in this paper we provide a number of results for paths and cycles, and relate this parameter to graph powers and domination in general. For trees we use decomposition arguments to bound the eternal distance-$k$ domination numbers, and solve the problem entirely in the case of perfect $m$-ary trees.
翻译:永久支配是一个动态过程, 使图表不受一连串的顶端入侵。 在永久的距离- k$ 控制下, 警卫最初占据着远方- k$的顶端。 在顶端遭到攻击后, 警卫“ defend ” 由每移动到远方美元形成一个远程- k$的顶部设置, 使一些警卫占据了被攻击的顶部。 图形的永久距离- k$ 控制数是防御任何攻击序列所需的最低警卫人数。 这一过程是针对美元=1美元的情况进行的很好研究。 我们采用永久的距离- k$ 的顶部控制为$ > 1美元。 确定给定的顶部是否是永久的距离- 美元控制套位, 在本文中, 我们为路径和周期提供一些结果, 并将这个参数与图表的力量和一般的控制联系起来。 对于树木, 我们使用解剖参数来约束永恒的距离- $美元 的顶部数字, 并完全解决问题 。