The $k-$traveling salesman problem ($k$-TSP) seeks a tour of minimal length that visits a subset of $k\leq n$ points. The traveling repairman problem (TRP) seeks a complete tour with minimal latency. This paper provides constant-factor probabilistic approximations of both problems. We first show that the optimal length of the $k$-TSP path grows at a rate of $\Theta\left(k/n^{\frac{1}{2}\left(1+\frac{1}{k-1}\right)}\right)$. The proof provides a constant-factor approximation scheme, which solves a TSP in a high-concentration zone -- leveraging large deviations of local concentrations. Then, we show that the optimal TRP latency grows at a rate of $\Theta(n\sqrt n)$. This result extends the classical Beardwood-Halton-Hammersley theorem to the TRP. Again, the proof provides a constant-factor approximation scheme, which visits zones by decreasing order of probability density. We discuss practical implications of this result in the design of transportation and logistics systems. Finally, we propose dedicated notions of fairness -- randomized population-based fairness for the $k$-TSP and geographical fairness for the TRP -- and give algorithms to balance efficiency and fairness.
翻译:$- $- $ 旅行销售商问题 (k$- tSP) 寻求一个最短长度的巡演, 访问一个小点 $k\leq n$。 旅行修理工问题 (TRP) 寻求一个完全的巡演, 使用最小的潜伏。 本文对这两个问题提供了不变因素的概率近似值。 我们首先显示, 美元- TSP 路径的最佳长度以 $\\\ left( k/ n ⁇ frac{ 1 ⁇ 2 ⁇ 2 ⁇ left( 1 ⁇ frac{ 1 ⁇ k-1 ⁇ räright) $ (right) 的速率增长。 证据提供了一种常数的近似方案, 通过降低概率密度, 在一个高集中区解决了 TSP 。 然后, 我们显示, 最佳的TRP 延度以 $(n\ sqrqn) 的速率增长。 将典型的Bardwood- Halton- Hammersley theorem suret (late- purn- purgn- comn- comnical- preal- preal- pal- pal- paltiews) laviews- sal- pal- ress- sal- slupluplational- slupal- sluplupal- slational- slupal- sal- resmluplupal- sal- sal- slupal- ress- ress- sal- ladal- ress- ress- sal- lad- ress- ress- sal- ladal- sal- sal- sal- sal- sal- sal- sal- ress- sal- legal- ladal- lax)