This paper introduces an autonomous bin picking system for cable harnesses - an extremely challenging object in bin picking task. Currently cable harnesses are unsuitable to be imported to automated production due to their length and elusive structures. Considering the task of robotic bin picking where the harnesses are heavily entangled, it is challenging for a robot to pick harnesses up one by one using conventional bin picking methods. In this paper, we present an efficient approach to overcoming the difficulties when dealing with entangled-prone parts. We develop several motion schemes for the robot to pick up a single harness avoiding any entanglement. Moreover, we proposed a learning-based bin picking policy to select both grasps and designed motion schemes in a reasonable sequence. Our method is unique due to the novelty for sufficiently solving the entanglement problem in picking cluttered cable harnesses. We demonstrate our approach on a set of real-world experiments, during which the proposed method is capable to perform the sequential bin picking task with both effectiveness and accuracy under a variety of cluttered scenarios.


翻译:本文引入了一条自主的电缆用具拾取系统, 即电缆用具是一个在捡拾任务中极具挑战性的对象。 目前, 电缆用具由于长度和难以捉摸的结构, 不适合进口到自动化生产。 考虑到机器人用具拾取器的任务, 使用常规用具拾取方法, 机器人将一个接一个接一个, 具有挑战性。 在本文中, 我们展示了一种有效的方法来克服在处理缠绕易碎部分时遇到的困难。 我们开发了几种运动方案, 使机器人可以拿起一个单用具来避免纠缠。 此外, 我们提出一个基于学习的垃圾拾取政策, 以合理的顺序选择抓取和设计运动计划。 我们的方法之所以独特, 是因为新颖的办法来充分解决被缠绕的电缆用具的纠缠问题。 我们展示了一套真实世界实验的方法, 在此期间, 所提议的方法能够在各种杂的情景下, 以有效和准确的方式按顺序挑选任务。

0
下载
关闭预览

相关内容

Automator是苹果公司为他们的Mac OS X系统开发的一款软件。 只要通过点击拖拽鼠标等操作就可以将一系列动作组合成一个工作流,从而帮助你自动的(可重复的)完成一些复杂的工作。Automator还能横跨很多不同种类的程序,包括:查找器、Safari网络浏览器、iCal、地址簿或者其他的一些程序。它还能和一些第三方的程序一起工作,如微软的Office、Adobe公司的Photoshop或者Pixelmator等。
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
谷歌足球游戏环境使用介绍
CreateAMind
33+阅读 · 2019年6月27日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【泡泡一分钟】高动态环境的语义单目SLAM
泡泡机器人SLAM
5+阅读 · 2019年3月27日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Arxiv
0+阅读 · 2022年2月15日
Continual Unsupervised Representation Learning
Arxiv
7+阅读 · 2019年10月31日
Residual Policy Learning
Arxiv
4+阅读 · 2018年12月15日
Arxiv
6+阅读 · 2018年12月10日
Arxiv
8+阅读 · 2018年6月19日
VIP会员
相关资讯
谷歌足球游戏环境使用介绍
CreateAMind
33+阅读 · 2019年6月27日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【泡泡一分钟】高动态环境的语义单目SLAM
泡泡机器人SLAM
5+阅读 · 2019年3月27日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
相关论文
Arxiv
0+阅读 · 2022年2月15日
Continual Unsupervised Representation Learning
Arxiv
7+阅读 · 2019年10月31日
Residual Policy Learning
Arxiv
4+阅读 · 2018年12月15日
Arxiv
6+阅读 · 2018年12月10日
Arxiv
8+阅读 · 2018年6月19日
Top
微信扫码咨询专知VIP会员