This paper introduces an autonomous bin picking system for cable harnesses - an extremely challenging object in bin picking task. Currently cable harnesses are unsuitable to be imported to automated production due to their length and elusive structures. Considering the task of robotic bin picking where the harnesses are heavily entangled, it is challenging for a robot to pick harnesses up one by one using conventional bin picking methods. In this paper, we present an efficient approach to overcoming the difficulties when dealing with entangled-prone parts. We develop several motion schemes for the robot to pick up a single harness avoiding any entanglement. Moreover, we proposed a learning-based bin picking policy to select both grasps and designed motion schemes in a reasonable sequence. Our method is unique due to the novelty for sufficiently solving the entanglement problem in picking cluttered cable harnesses. We demonstrate our approach on a set of real-world experiments, during which the proposed method is capable to perform the sequential bin picking task with both effectiveness and accuracy under a variety of cluttered scenarios.
翻译:本文引入了一条自主的电缆用具拾取系统, 即电缆用具是一个在捡拾任务中极具挑战性的对象。 目前, 电缆用具由于长度和难以捉摸的结构, 不适合进口到自动化生产。 考虑到机器人用具拾取器的任务, 使用常规用具拾取方法, 机器人将一个接一个接一个, 具有挑战性。 在本文中, 我们展示了一种有效的方法来克服在处理缠绕易碎部分时遇到的困难。 我们开发了几种运动方案, 使机器人可以拿起一个单用具来避免纠缠。 此外, 我们提出一个基于学习的垃圾拾取政策, 以合理的顺序选择抓取和设计运动计划。 我们的方法之所以独特, 是因为新颖的办法来充分解决被缠绕的电缆用具的纠缠问题。 我们展示了一套真实世界实验的方法, 在此期间, 所提议的方法能够在各种杂的情景下, 以有效和准确的方式按顺序挑选任务。