Free energy biasing methods have proven to be powerful tools to accelerate the simulation of important conformational changes of molecules by modifying the sampling measure. However, most of these methods rely on the prior knowledge of low-dimensional slow degrees of freedom, i.e. Collective Variables (CV). Alternatively, such CVs can be identified using machine learning (ML) and dimensionality reduction algorithms. In this context, approaches where the CVs are learned in an iterative way using adaptive biasing have been proposed: at each iteration, the learned CV is used to perform free energy adaptive biasing to generate new data and learn a new CV. In this paper, we introduce a new iterative method involving CV learning with autoencoders: Free Energy Biasing and Iterative Learning with AutoEncoders (FEBILAE). Our method includes a reweighting scheme to ensure that the learning model optimizes the same loss at each iteration, and achieves CV convergence. Using the alanine dipeptide system and the solvated chignolin mini-protein system as examples, we present results of our algorithm using the extended adaptive biasing force as the free energy adaptive biasing method.
翻译:事实证明,自由能量偏向方法通过修改抽样测量标准,是加速模拟分子重要相容变化的重要相向变化的有力工具。然而,这些方法大多依赖以前对低维慢度自由知识的知识,即集体变量(CV)。或者,利用机器学习(ML)和减少维度的算法,可以识别这种CV。在这方面,提出了利用适应偏差以迭代方式学习CV的方法:在每次迭代时,所学的CV被用来进行自由能源适应偏差,以生成新数据并学习新的CV。在本文中,我们采用了一种新的迭代方法,包括CV学习与自动电算数者学习:自由能源比重和与自动电算数的循环学习。我们的方法包括一个重新加权办法,以确保学习模型在每次迭代中以相同损失的最佳方式学习,并实现CV趋同。我们利用anine diptide系统和软化的 chignolin Mini-protein系统来进行自由能源适应性分析,我们用扩大的偏差法作为调整结果。