The problem of Multi-user Blind $X$-secure $T$-colluding Symmetric Private Information Retrieval from Maximum Distance Separable (MDS) coded storage system with $B$ Byzantine and $U$ unresponsive servers (U-B-MDS-MB-XTSPIR) is studied in this paper. Specifically, a database consisting of multiple files, each labeled by $M$ indices, is stored at the distributed system with $N$ servers according to $(N,K+X)$ MDS codes over $\mathbb{F}_q$ such that any group of up to $X$ colluding servers learn nothing about the data files. There are $M$ users, in which each user $m,m=1,\ldots,M$ privately selects an index $\theta_m$ and wishes to jointly retrieve the file specified by the $M$ users' indices $(\theta_1,\ldots,\theta_M)$ from the storage system, while keeping its index $\theta_m$ private from any $T_m$ colluding servers, where there exists $B$ Byzantine servers that can send arbitrary responses maliciously to confuse the users retrieving the desired file and $U$ unresponsive servers that will not respond any message at all. In addition, each user must not learn information about the other users' indices and the database more than the desired file. An U-B-MDS-MB-XTSPIR scheme is constructed based on Lagrange encoding. The scheme achieves a retrieval rate of $1-\frac{K+X+T_1+\ldots+T_M+2B-1}{N-U}$ with secrecy rate $\frac{K+X+T_1+\ldots+T_M-1}{ N-(K+X+T_1+\ldots+T_M+2B+U-1)}$ on the finite field of size $q\geq N+\max\{K, N-(K+X+T_1+\ldots+T_M+2B+U-1)\}$ for any number of files.
翻译:本文研究的是多用户盲人(U-B-MDS-MB-MB-XP-XPIR)的问题。具体地说,一个由多个文件组成的数据库,每个标签为美元指数,储存在分布式系统中,以美元服务器存储($(N),K+2美元)的MDS(MDS) 代码在$(MDS_MTT_MQ_MQQ) 上,由最大距离分解(MDS) 编码存储系统编码为$(MDS),由美元(MDS) 代碼为$(美元) $(美元) 美元(K+美元) 美元(MDFS) 代码为$(MT) 美元(FNM) 代码为美元(MT) 代码为美元(MDS) 的编码存储系统。 由每个用户(MDMB-K) 服务器(美元) 网络服务器(美元) 平台(MDMD) 平台(每个用户(美元) 平台) 平台(美元) 平台(OD) 平台(NMD) 平台(NMD) 平台(NMD) 平台(美元) 平台) 平台(OD) 平台(NMD) 平台(NT) 平台) 平台(NT) 平台(NT) 以美元) 以美元) 美元) 而不是以美元(NT) 的索引(NT) 以美元(NT) 美元(NT) 服务器(NT) 的索引(NT_(NT_MD- mex(NT) 美元(MD) 美元(MD) ) ) 美元(MD) ) 美元(M) 美元(MD) ) 服务器(MD) 服务器(NT)