Transformer-based models have achieved state-of-the-art results in a wide range of natural language processing (NLP) tasks including document summarization. Typically these systems are trained by fine-tuning a large pre-trained model to the target task. One issue with these transformer-based models is that they do not scale well in terms of memory and compute requirements as the input length grows. Thus, for long document summarization, it can be challenging to train or fine-tune these models. In this work, we exploit large pre-trained transformer-based models and address long-span dependencies in abstractive summarization using two methods: local self-attention; and explicit content selection. These approaches are compared on a range of network configurations. Experiments are carried out on standard long-span summarization tasks, including Spotify Podcast, arXiv, and PubMed datasets. We demonstrate that by combining these methods, we can achieve state-of-the-art results on all three tasks in the ROUGE scores. Moreover, without a large-scale GPU card, our approach can achieve comparable or better results than existing approaches.


翻译:以变压器为基础的模型在包括文件摘要化在内的各种自然语言处理(NLP)任务中取得了最先进的结果。这些系统通常通过微调一个大型预先培训的模型对目标任务进行培训。这些变压器模型的一个问题是,这些模型在记忆和计算要求方面规模不高,而随着输入长度的提高,这些模型的记忆和计算要求也不同。因此,对于长期的文件总和来说,培训或微调这些模型可能具有挑战性。在这项工作中,我们利用了大型预先培训的变压器模型,并用两种方法来解决抽象式总和的长期依赖性:当地自省;和明确的内容选择。这些方法比较了网络配置的范围。实验是在标准长宽的拼凑任务上进行的,包括Spodificast、arXiv和PubMed数据集。我们证明,通过结合这些方法,我们能够在ROUGEE分数的所有三项任务中实现最先进的结果。此外,没有大规模GPUP卡,我们的方法可以比现有的结果更好。

0
下载
关闭预览

相关内容

最新《Transformers模型》教程,64页ppt
专知会员服务
312+阅读 · 2020年11月26日
【DeepMind】强化学习教程,83页ppt
专知会员服务
154+阅读 · 2020年8月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
Transformer文本分类代码
专知会员服务
117+阅读 · 2020年2月3日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
【文本摘要】Text Summarization文本摘要与注意力机制
深度学习自然语言处理
9+阅读 · 2020年3月15日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
已删除
将门创投
5+阅读 · 2019年4月29日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
17+阅读 · 2021年3月29日
Arxiv
16+阅读 · 2020年5月20日
Arxiv
5+阅读 · 2019年8月22日
Star-Transformer
Arxiv
5+阅读 · 2019年2月28日
Arxiv
27+阅读 · 2017年12月6日
VIP会员
相关VIP内容
最新《Transformers模型》教程,64页ppt
专知会员服务
312+阅读 · 2020年11月26日
【DeepMind】强化学习教程,83页ppt
专知会员服务
154+阅读 · 2020年8月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
Transformer文本分类代码
专知会员服务
117+阅读 · 2020年2月3日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
相关资讯
【文本摘要】Text Summarization文本摘要与注意力机制
深度学习自然语言处理
9+阅读 · 2020年3月15日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
已删除
将门创投
5+阅读 · 2019年4月29日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
17+阅读 · 2021年3月29日
Arxiv
16+阅读 · 2020年5月20日
Arxiv
5+阅读 · 2019年8月22日
Star-Transformer
Arxiv
5+阅读 · 2019年2月28日
Arxiv
27+阅读 · 2017年12月6日
Top
微信扫码咨询专知VIP会员