Spatial autocorrelation and spatial heterogeneity widely exist in spatial data, which make the traditional machine learning model perform badly. Spatial domain generalization is a spatial extension of domain generalization, which can generalize to unseen spatial domains in continuous 2D space. Specifically, it learns a model under varying data distributions that generalizes to unseen domains. Although tremendous success has been achieved in domain generalization, there exist very few works on spatial domain generalization. The advancement of this area is challenged by: 1) Difficulty in characterizing spatial heterogeneity, and 2) Difficulty in obtaining predictive models for unseen locations without training data. To address these challenges, this paper proposes a generic framework for spatial domain generalization. Specifically, We develop the spatial interpolation graph neural network that handles spatial data as a graph and learns the spatial embedding on each node and their relationships. The spatial interpolation graph neural network infers the spatial embedding of an unseen location during the test phase. Then the spatial embedding of the target location is used to decode the parameters of the downstream-task model directly on the target location. Finally, extensive experiments on thirteen real-world datasets demonstrate the proposed method's strength.
翻译:空间数据中广泛存在着空间空间自化和空间异化,使传统机器学习模型效果不佳。空间域域一般化是一个域域的空间扩展,它可以在连续 2D 空间中普遍推广到看不见的空间空间域。具体地说,它学习了在各种数据分布中普遍推广到无形域的模型。虽然在空间域一般化方面取得了巨大成功,但在空间域一般化方面却很少有工作。这个领域的进步受到以下挑战:(1) 空间异质特性难以定性,和(2) 在没有培训数据的情况下难以获得隐蔽地点的预测模型。为应对这些挑战,本文件提出了一个空间域一般化通用的通用框架。具体地说,我们开发了空间内插图图形神经网络,将空间内插图像作为图表处理,并学习每个节点及其关系的空间嵌入。空间内嵌图神经网络在测试阶段将一个隐蔽地点的空间嵌入情况推导出。然后,目标位置的空间嵌入用于解码直接在目标位置上的下游数据模型的参数。最后,我们开发了将空间内插图图的神经网络,展示了在目标位置上的真正数据。