Subgraph counting is fundamental for analyzing connection patterns or clustering tendencies in graph data. Recent studies have applied LDP (Local Differential Privacy) to subgraph counting to protect user privacy even against a data collector in social networks. However, existing local algorithms suffer from extremely large estimation errors or assume multi-round interaction between users and the data collector, which requires a lot of user effort and synchronization. In this paper, we focus on a one-round of interaction and propose accurate subgraph counting algorithms by introducing a recently studied shuffle model. We first propose a basic technique called wedge shuffling to send wedge information, the main component of several subgraphs, with small noise. Then we apply our wedge shuffling to counting triangles and 4-cycles -- basic subgraphs for analyzing clustering tendencies -- with several additional techniques. We also show upper bounds on the estimation error for each algorithm. We show through comprehensive experiments that our one-round shuffle algorithms significantly outperform the one-round local algorithms in terms of accuracy and achieve small estimation errors with a reasonable privacy budget, e.g., smaller than 1 in edge DP.
翻译:对于分析图形数据中的连接模式或群集趋势来说,子数计算是分析图形数据中的连接模式或群集趋势的基础。最近的研究已经应用LDP(地方差异隐私)进行子数计算,以保护用户隐私,甚至针对社交网络中的数据收集者。然而,现有的本地算法存在巨大的估计错误,或者在用户和数据收集者之间假设多方面的互动,这需要大量的用户努力和同步。在本文中,我们侧重于一回合的互动,并通过引入最近研究过的洗发模型提出准确的子算法。我们首先提出一种叫Wedge的原始技术,以发送一些子集的主要组成部分,即一些小噪音的 wedge 发送信息。然后我们用我们Wedge的打乱来计算三角和四周期,即分析组合趋势的基本子集图,需要额外的技术。我们还展示了每种算法的估计错误的上方。我们通过全面实验表明,我们的单回合的洗发算法在准确性方面大大超出当地一回合的算法,并用合理的隐私预算(例如小于边缘的1)实现小小的估算错误。