Recent works on sparse neural network training (sparse training) have shown that a compelling trade-off between performance and efficiency can be achieved by training intrinsically sparse neural networks from scratch. Existing sparse training methods usually strive to find the best sparse subnetwork possible in one single run, without involving any expensive dense or pre-training steps. For instance, dynamic sparse training (DST), is capable of reaching a competitive performance of dense training by iteratively evolving the sparse topology during the course of training. In this paper, we argue that it is better to allocate the limited resources to create multiple low-loss sparse subnetworks and superpose them into a stronger one, instead of allocating all resources entirely to find an individual subnetwork. To achieve this, two desiderata are required: (1) efficiently producing many low-loss subnetworks, the so-called cheap tickets, within one training process limited to the standard training time used in dense training; (2) effectively superposing these cheap tickets into one stronger subnetwork. To corroborate our conjecture, we present a novel sparse training approach, termed Sup-tickets, which can satisfy the above two desiderata concurrently in a single sparse-to-sparse training process. Across various modern architectures on CIFAR-10/100 and ImageNet, we show that Sup-tickets integrates seamlessly with the existing sparse training methods and demonstrates consistent performance improvement.


翻译:最近关于稀疏神经网络培训的工作(粗糙的培训)表明,通过从零开始对内在稀疏神经网络进行培训,可以实现绩效和效率之间的令人信服的权衡。现有的稀少培训方法通常努力找到一个单一过程可能最稀少的子网络,而不涉及任何昂贵的密集或培训前的步骤。例如,动态稀少培训(DST)能够通过在培训过程中迭接地演进稀少的地形来达到密集培训的竞争性表现。在本文中,我们认为,最好将有限的资源分配到创造多种低损失的稀少子网络并将其叠加到一个更强的网络,而不是完全将所有资源分配到一个单独的子网络。要做到这一点,需要两种脱让:(1) 高效地生产许多低廉的子网络,即所谓的廉价机票,在一个培训过程中,限于密集培训中使用的标准培训时间;(2) 有效地将这些廉价机票加到一个更强的子网络。为了证实我们的推测,我们提出了一种新型的稀少培训方法,称为Supt-tkets,这可以满足以上两个不动不动式的培训方法。要同时将一个连续的、连续的、不动不动式的、不动式的Srrestrestrestrestrestre-trastrestrestrestrestrestraxx

0
下载
关闭预览

相关内容

《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年10月5日
Arxiv
0+阅读 · 2022年10月5日
Arxiv
0+阅读 · 2022年9月30日
VIP会员
相关VIP内容
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员