We investigate a filtered Lie-Trotter splitting scheme for the ``good" Boussinesq equation and derive an error estimate for initial data with very low regularity. Through the use of discrete Bourgain spaces, our analysis extends to initial data in $H^{s}$ for $0<s\leq 2$, overcoming the constraint of $s>1/2$ imposed by the bilinear estimate in smooth Sobolev spaces. We establish convergence rates of order $\tau^{s/2}$ in $L^2$ for such levels of regularity. Our analytical findings are supported by numerical experiments.
翻译:暂无翻译