In this work, we study discrete morphological symmetries of dynamical systems, a predominant feature in animal biology and robotic systems, expressed when the system's morphology has one or more planes of symmetry describing the duplication and balanced distribution of body parts. These morphological symmetries imply that the system's dynamics are symmetric (or approximately symmetric), which in turn imprints symmetries in optimal control policies and in all proprioceptive and exteroceptive measurements related to the evolution of the system's dynamics. For data-driven methods, symmetry represents an inductive bias that justifies data augmentation and the construction of symmetric function approximators. To this end, we use group theory to present a theoretical and practical framework allowing for (1) the identification of the system's morphological symmetry group $\G$, (2) data-augmentation of proprioceptive and exteroceptive measurements, and (3) the exploitation of data symmetries through the use of $\G$-equivariant/invariant neural networks, for which we present experimental results on synthetic and real-world applications, demonstrating how symmetry constraints lead to better sample efficiency and generalization while reducing the number of trainable parameters.


翻译:在这项工作中,我们研究动物生物学和机器人系统的主要特征 -- -- 动物生物学和机器人系统的主要特征 -- -- 动态系统的离散形态对称性,当该系统的形态对称性有一或多层对称性,描述身体部分的重复和均衡分布。这些形态对称性意味着该系统的动态是对称(或大致对称性),这反过来又在最佳控制政策方面以及在与系统动态演变有关的所有自主感知和外向性测量中产生对称性。在数据驱动方法方面,对称性代表一种感性偏向性偏向性,证明有必要增加数据和构建对称功能对称性功能对称。为此,我们利用小组理论提出一个理论和实际框架,以便(1) 确定系统的形态对称性对称性组(或大致对称性) $\G$,(2) 对与系统动态演变有关的所有主动感知性和外向感知性测量性测量,(3) 利用数据对数据对称性进行利用,利用美元-G$-Q-Q-Q-Q-Q-Q-Q-Q-Q-Q-Q-Q-Q-rodestreval-imal-traestal Ex-tracal-tracal-restistryal-restistryal-tracal-traction-tostrismismal-sl) 如何制成,同时演示结果,如何如何如何如何制成,以降低当前合成效率和制成为普通/制成。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
专知会员服务
51+阅读 · 2020年12月14日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
专知会员服务
162+阅读 · 2020年1月16日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
11+阅读 · 2022年9月1日
Arxiv
93+阅读 · 2022年8月2日
Arxiv
38+阅读 · 2021年8月31日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员