In this work, we study discrete morphological symmetries of dynamical systems, a predominant feature in animal biology and robotic systems, expressed when the system's morphology has one or more planes of symmetry describing the duplication and balanced distribution of body parts. These morphological symmetries imply that the system's dynamics are symmetric (or approximately symmetric), which in turn imprints symmetries in optimal control policies and in all proprioceptive and exteroceptive measurements related to the evolution of the system's dynamics. For data-driven methods, symmetry represents an inductive bias that justifies data augmentation and the construction of symmetric function approximators. To this end, we use group theory to present a theoretical and practical framework allowing for (1) the identification of the system's morphological symmetry group $\G$, (2) data-augmentation of proprioceptive and exteroceptive measurements, and (3) the exploitation of data symmetries through the use of $\G$-equivariant/invariant neural networks, for which we present experimental results on synthetic and real-world applications, demonstrating how symmetry constraints lead to better sample efficiency and generalization while reducing the number of trainable parameters.
翻译:在这项工作中,我们研究动物生物学和机器人系统的主要特征 -- -- 动物生物学和机器人系统的主要特征 -- -- 动态系统的离散形态对称性,当该系统的形态对称性有一或多层对称性,描述身体部分的重复和均衡分布。这些形态对称性意味着该系统的动态是对称(或大致对称性),这反过来又在最佳控制政策方面以及在与系统动态演变有关的所有自主感知和外向性测量中产生对称性。在数据驱动方法方面,对称性代表一种感性偏向性偏向性,证明有必要增加数据和构建对称功能对称性功能对称。为此,我们利用小组理论提出一个理论和实际框架,以便(1) 确定系统的形态对称性对称性组(或大致对称性) $\G$,(2) 对与系统动态演变有关的所有主动感知性和外向感知性测量性测量,(3) 利用数据对数据对称性进行利用,利用美元-G$-Q-Q-Q-Q-Q-Q-Q-Q-Q-Q-Q-Q-Q-rodestreval-imal-traestal Ex-tracal-tracal-restistryal-restistryal-tracal-traction-tostrismismal-sl) 如何制成,同时演示结果,如何如何如何如何制成,以降低当前合成效率和制成为普通/制成。