Identifying directions where extreme events occur is a major challenge in multivariate extreme value analysis. In this paper, we use the concept of sparse regular variation introduced by Meyer and Wintenberger to infer the tail dependence of a random vector X. This approach relies on the Euclidean projection onto the simplex which better exhibits the sparsity structure of the tail of X than the standard methods. Our procedure based on a rigorous methodology aims at capturing clusters of extremal coordinates of X. It also includes the identification of a threshold above which the values taken by X are considered as extreme. We provide an efficient and scalable algorithm called MUSCLE and apply it on numerical experiments to highlight the relevance of our findings. Finally we illustrate our approach with wind speed data and financial return data.


翻译:在多变极端价值分析中,极端事件的发生方向是一个重大挑战。在本文中,我们使用由迈耶和温滕伯格引入的稀疏经常变异概念来推断随机矢量X的尾部依赖性。这个方法依赖于Euclidean投影到简单x上,该简单x比标准方法更好地显示X尾量的宽度结构。我们基于严格方法的程序旨在捕捉X的外形坐标组。它还包括确定一个阈值,而X的值高于这一阈值被视为极端值。我们提供了一种高效和可缩放的算法,称为MUSCLE,并应用它进行数字实验来突出我们发现的相关性。最后,我们用风速数据和财务回报数据来说明我们的方法。

0
下载
关闭预览

相关内容

【干货书】面向计算科学和工程的Python导论,167页pdf
专知会员服务
41+阅读 · 2021年4月7日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【干货书】'Mastering Go 第二版中文版',143页pdf
专知会员服务
47+阅读 · 2020年11月1日
【Manning新书】现代Java实战,592页pdf
专知会员服务
99+阅读 · 2020年5月22日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年5月5日
Arxiv
0+阅读 · 2021年5月4日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员