Although models for count data with over-dispersion have been widely considered in the literature, models for under-dispersion -- the opposite phenomenon -- have received less attention as it is only relatively common in particular research fields such as biodosimetry and ecology. The Good distribution is a flexible alternative for modelling count data showing either over-dispersion or under-dispersion, although no R packages are still available to the best of our knowledge. We aim to present in the following the R package good that computes the standard probabilistic functions (i.e., probability density function, cumulative distribution function, and quantile function) and generates random samples from a population following a Good distribution. The package also considers a function for Good regression, including covariates in a similar way to that of the standard glm function. We finally show the use of such a package with some real-world data examples addressing both over-dispersion and especially under-dispersion.


翻译:虽然文献中已广泛考虑过多分散的计数数据模型,但差分过低 -- -- 反现象 -- -- 模型得到的关注较少,因为在生物多度测量和生态学等特定研究领域,这种模型只是相对常见的。良好的分布是模拟计数数据的灵活替代方法,显示过分散或差分不足,尽管我们所了解的目前还不具备任何R包。我们的目标是在以下R包中提供计算标准概率函数(即概率密度函数、累积分布函数和定量函数)的R包件,并在良好分布后从人群中生成随机样本。该包件还考虑了良好回归的功能,包括以与标准 glm 函数相似的方式进行共变。我们最后用一些真实世界的数据实例来显示这种包的使用,其中既涉及多分散性,又特别涉及下分散性。

0
下载
关闭预览

相关内容

[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年6月23日
Arxiv
0+阅读 · 2021年6月23日
Learning to Importance Sample in Primary Sample Space
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员