We examine the following problem: given a collection of Clifford gates, describe the set of unitaries generated by circuits composed of those gates. Specifically, we allow the standard circuit operations of composition and tensor product, as well as ancillary workspace qubits as long as they start and end in states uncorrelated with the input, which rule out common "magic state injection" techniques that make Clifford circuits universal. We show that there are exactly 57 classes of Clifford unitaries and present a full classification characterizing the gate sets which generate them. This is the first attempt at a quantum extension of the classification of reversible classical gates introduced by Aaronson et al., another part of an ambitious program to classify all quantum gate sets. The classification uses, at its center, a reinterpretation of the tableau representation of Clifford gates to give circuit decompositions, from which elementary generators can easily be extracted. The 57 different classes are generated in this way, 30 of which arise from the single-qubit subgroups of the Clifford group. At a high level, the remaining classes are arranged according to the bases they preserve. For instance, the CNOT gate preserves the X and Z bases because it maps X-basis elements to X-basis elements and Z-basis elements to Z-basis elements. The remaining classes are characterized by more subtle tableau invariants; for instance, the T_4 and phase gate generate a proper subclass of Z-preserving gates.


翻译:我们考察了以下问题: 给一组克里福德门, 描述由由这些门组成的电路所生成的一组同源体。 具体地说, 只要在与输入不相干的国家开始和结束, 我们允许组成和高压产品以及辅助工作空间qubits的标准电路操作, 只要它们与输入不相干, 就可以在与输入不相干的国家开始和结束, 排除普通的“ 神奇状态注入” 技术, 使克里福德电路普遍化。 我们显示, 准确有57个克里福德门类, 并展示了生成这些门类的完整分类特性。 这是首次尝试将Aaronson等人提出的可逆古典门的分类量级扩大。 这是另一个雄心勃勃勃的方案, 对所有量门门组进行分类。 分类时, 在中心对克里福德门门的表面表示重新解释, 使基本电流能提取。 以这种方式生成了57个不同的类, 其中30个来自克里福德组的单项分组。 在高层次上, 其余的门类按例分类排列为X级, 其底部元素为Xba 级, 保存Z 。

0
下载
关闭预览

相关内容

iOS 8 提供的应用间和应用跟系统的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source: iOS 8 Extensions: Apple’s Plan for a Powerful App Ecosystem
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2022年2月3日
Toric Geometry of Entropic Regularization
Arxiv
0+阅读 · 2022年2月3日
Arxiv
12+阅读 · 2019年3月14日
Embedding Logical Queries on Knowledge Graphs
Arxiv
3+阅读 · 2019年2月19日
VIP会员
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员