Many polytopes arising in polyhedral combinatorics are linear projections of higher-dimensional polytopes with significantly fewer facets. Such lifts may yield compressed representations of polytopes, which are typically used to construct small-size linear programs. Motivated by algorithmic implications for the closest vector problem, we study lifts of Voronoi cells of lattices. We construct an explicit $d$-dimensional lattice such that every lift of the respective Voronoi cell has $2^{\Omega(d / \log d)}$ facets. On the positive side, we show that Voronoi cells of $d$-dimensional root lattices and their dual lattices have lifts with $O(d)$ and $O(d \log d)$ facets, respectively. We obtain similar results for spectrahedral lifts.
翻译:在多面交织器中产生的许多多面体是高维多面体的线性预测,其尺寸要小得多。 这样的升降可能会产生多面体的压缩表象, 这些多面体通常用于构建小型线性程序。 我们受最接近的矢量问题的算法影响所驱使, 我们研究Voronoi细胞的拉托式。 我们建造了一个清晰的美元- 维面的升降器, 这样Voronoi细胞的每一次升降都具有2 ⁇ Omega(d/\log d) 美元。 在正面方面, 我们显示Voronoie细胞的美元- 维面根拉托克及其双层拉托克分别用$(d) 和$(d) $(d\log) 美元(d) 进行升升降。 我们为光谱式升降机获得了类似的结果 。