We present a set of algorithms for Multidimensional Scaling (MDS) to be used with large datasets. MDS is a statistic tool for reduction of dimensionality, using as input a distance matrix of dimensions $n \times n$. When $n$ is large, classical algorithms suffer from computational problems and MDS configuration can not be obtained. In this paper we address these problems by means of three algorithms: Divide and Conquer MDS, Fast MDS and MDS based on Gower interpolation (the first and the last being original proposals). The main ideas of these methods are based on partitioning the dataset into small pieces, where classical MDS methods can work. In order to check the performance of the algorithms as well as to compare them, we do a simulation study. This study points out that Fast MDS and MDS based on Gower interpolation are appropriated to use when $n$ is large. Although Divide and Conquer MDS is not as fast as the other two algorithms, it is the best method that captures the variance of the original data.
翻译:我们提出了一套用于大型数据集的多层面增强(MDS)的算法。 MDS是用于减少维度的统计工具,它使用一个维度的距离矩阵输入 $ 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 的经典算法 美元 美元 美元 美元 美元 美元 美元 美元 美元 的 MDS 配置 无法 获得 MDS 。 在本文件中,我们通过三种算法来解决这些问题: 分解和征服 MDS 、 快速 MDS 和 MDS 以 Gower 的内插法为基础 。 这些方法的主要想法是基于将数据集分割成小块, 经典 MDS 方法可以发挥作用 。 为了检查这些算法的性能和比较它们, 我们做一个模拟研究。 这项研究指出, 以 Gower 美元 的快速 MDS 和 MDS 美元 美元 以 美元 美元 美元 美元 用于 美元 。 虽然 分解和 Conquerque MDS 不是 和 两种算法那么快, 但是, 但这是最佳的方法来捕捉取原始数据 。