In this paper we show how to construct diagonal scalings for arbitrary matrix pencils $\lambda B-A$, in which both $A$ and $B$ are complex matrices (square or nonsquare). The goal of such diagonal scalings is to "balance" in some sense the row and column norms of the pencil. We see that the problem of scaling a matrix pencil is equivalent to the problem of scaling the row and column sums of a particular nonnegative matrix. However, it is known that there exist square and nonsquare nonnegative matrices that can not be scaled arbitrarily. To address this issue, we consider an approximate embedded problem, in which the corresponding nonnegative matrix is square and can always be scaled. The new scaling methods are then based on the Sinkhorn-Knopp algorithm for scaling a square nonnegative matrix with total support to be doubly stochastic or on a variant of it. In addition, using results of U. G. Rothblum and H. Schneider (1989), we give simple sufficient conditions on the zero pattern for the existence of diagonal scalings of square nonnegative matrices to have any prescribed common vector for the row and column sums. We illustrate numerically that the new scaling techniques for pencils improve the accuracy of the computation of their eigenvalues.


翻译:在本文中,我们展示了如何为任意的矩阵铅笔($\lambda B-A$)构建对称缩放比例,其中,美元和美元都是复杂的基质(平方或非平方)。这种对称缩放的目的是在某种意义上平衡铅笔的行和柱规范。我们看到,缩放一个矩阵铅笔的问题相当于一个特定的非负式矩阵的行和列总和的缩放问题。然而,众所周知,存在着不能任意缩放的正方和非方非正方非正方矩阵。为了解决这一问题,我们考虑了一个大致嵌入的问题,其中相应的非负式矩阵是正方形的,而且总是可以缩放。然后,新的缩放方法基于Sinkhorn-Knopp算法,以平方非正方形的基质缩放比例,同时支持更明显地调整某个非正向性矩阵的大小。此外,我们使用U.G.Rothblum和H.Schneider(1989)的结果,在零模式上给出了无法任意缩放的充足条件,用以显示其平面的平面的平面的平面的平面的平面图。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年9月30日
Arxiv
0+阅读 · 2021年9月30日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员