The preservation, monitoring, and control of water resources has been a major challenge in recent decades. Water resources must be constantly monitored to know the contamination levels of water. To meet this objective, this paper proposes a water monitoring system using autonomous surface vehicles, equipped with water quality sensors, based on a multimodal particle swarm optimization, and the federated learning technique, with Gaussian process as a surrogate model, the AquaFeL-PSO algorithm. The proposed monitoring system has two phases, the exploration phase and the exploitation phase. In the exploration phase, the vehicles examine the surface of the water resource, and with the data acquired by the water quality sensors, a first water quality model is estimated in the central server. In the exploitation phase, the area is divided into action zones using the model estimated in the exploration phase for a better exploitation of the contamination zones. To obtain the final water quality model of the water resource, the models obtained in both phases are combined. The results demonstrate the efficiency of the proposed path planner in obtaining water quality models of the pollution zones, with a 14$\%$ improvement over the other path planners compared, and the entire water resource, obtaining a 400$\%$ better model, as well as in detecting pollution peaks, the improvement in this case study is 4,000$\%$. It was also proven that the results obtained by applying the federated learning technique are very similar to the results of a centralized system.


翻译:近几十年来,水资源的保存、监测和控制一直是一项重大挑战; 水资源必须不断监测,以了解水的污染程度; 为实现这一目标,本文件提议使用自动地面车辆,配备水质传感器,以多式粒子堆积优化为基础,采用联邦学习技术,采用高森进程作为替代模型,AquaFel-PSO算法; 拟议的监测系统分为两个阶段,即勘探阶段和开发阶段; 在勘探阶段,车辆检查水资源表面,利用水质传感器获得的数据,在中央服务器上估计第一个水质模型; 在开发阶段,将该地区分为行动区,使用勘探阶段估计的模式,以更好地利用污染区; 为了获得水资源的最后水质模型,将这两个阶段获得的模型结合起来; 在勘探阶段,拟议路径规划员在获取污染区水质模型方面的效率为两个阶段; 在勘探阶段,车辆检查水资源表面,根据水质传感器获得的数据,在中央服务器上估算出第一个水质模型; 在开发阶段,将该地区分为行动区,使用模型,利用模型进行4000美元; 在研究过程中,通过测试,将40 000美元作为最佳做法,通过测试,以4 000美元为最佳做法,在中央污染系统取得更好的成果。

0
下载
关闭预览

相关内容

Surface 是微软公司( Microsoft)旗下一系列使用 Windows 10(早期为 Windows 8.X)操作系统的电脑产品,目前有 Surface、Surface Pro 和 Surface Book 三个系列。 2012 年 6 月 18 日,初代 Surface Pro/RT 由时任微软 CEO 史蒂夫·鲍尔默发布于在洛杉矶举行的记者会,2012 年 10 月 26 日上市销售。
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
27+阅读 · 2023年1月12日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员