This paper considers the problem of decentralized monitoring of a class of non-functional properties (NFPs) with quantitative operators, namely cumulative cost properties. The decentralized monitoring of NFPs can be a non-trivial task for several reasons: (i) they are typically expressed at a high abstraction level where inter-event dependencies are hidden, (ii) NFPs are difficult to be monitored in a decentralized way, and (iii) lack of effective decomposition techniques. We address these issues by providing a formal framework for decentralised monitoring of LTL formulas with quantitative operators. The presented framework employs the tableau construction and a formula unwinding technique (i.e., a transformation technique that preserves the semantics of the original formula) to split and distribute the input LTL formula and the corresponding quantitative constraint in a way such that monitoring can be performed in a decentralised manner. The employment of these techniques allows processes to detect early violations of monitored properties and perform some corrective or recovery actions. We demonstrate the effectiveness of the presented framework using a case study based on a Fischertechnik training model,a sorting line which sorts tokens based on their color into storage bins. The analysis of the case study shows the effectiveness of the presented framework not only in early detection of violations, but also in developing failure recovery plans that can help to avoid serious impact of failures on the performance of the system.
翻译:本文探讨了对一类非功能性特性(NFPs)进行分散监测的问题,由数量操作者对一类非功能性特性(即累积成本特性)进行分散监测的问题,对非功能性特性(NFPs)进行分散监测可能是一项非三重性任务,原因如下:(一) 它们通常在高度抽象的层次上表示,因为活动间依赖隐藏;(二) 国家联络点难以以分散方式监测,以及(三) 缺乏有效的分解技术。我们通过为向数量操作者对LTL公式进行分散监测提供一个正式框架来解决这些问题。提出的框架采用表格构建和公式不流化技术(即保留原公式的语义的转换技术),以便分割和分配投入LTL公式,以及相应的数量限制,以便能够以分散的方式进行监测。运用这些技术,可以发现早期违反所监测的特性的行为,并开展某些纠正或恢复行动。我们用Fisertechnik培训模式进行案例研究来证明所提出的框架的有效性,并且采用一种公式的解缩技术(即保留原公式的变式技术,即保留原公式的语),以便分解和分配输入结果,从而分析其早期检测结果的失败。