Side-channel attacks that leak sensitive information through a computing device's interaction with its physical environment have proven to be a severe threat to devices' security, particularly when adversaries have unfettered physical access to the device. Traditional approaches for leakage detection measure the physical properties of the device. Hence, they cannot be used during the design process and fail to provide root cause analysis. An alternative approach that is gaining traction is to automate leakage detection by modeling the device. The demand to understand the scope, benefits, and limitations of the proposed tools intensifies with the increase in the number of proposals. In this SoK, we classify approaches to automated leakage detection based on the model's source of truth. We classify the existing tools on two main parameters: whether the model includes measurements from a concrete device and the abstraction level of the device specification used for constructing the model. We survey the proposed tools to determine the current knowledge level across the domain and identify open problems. In particular, we highlight the absence of evaluation methodologies and metrics that would compare proposals' effectiveness from across the domain. We believe that our results help practitioners who want to use automated leakage detection and researchers interested in advancing the knowledge and improving automated leakage detection.
翻译:通过计算机装置与其物理环境的相互作用泄漏敏感信息的侧面通道攻击通过计算机装置与其物理环境的相互作用泄漏敏感信息,已证明对装置安全构成严重威胁,特别是当对手能够不受限制地实际接触该装置时。传统渗漏探测方法测量该装置的物理特性。因此,在设计过程中不能使用这些装置,因此无法提供根本原因分析。正在获得牵引的另一种方法是通过模拟装置来自动检测渗漏。理解拟议工具的范围、好处和局限性的要求随着提议数量的增加而得到加强。在这个 SoK中,我们根据模型的真相来源,对自动渗漏探测方法进行分类。我们把现有工具分为两个主要参数:模型是否包括从具体装置测量,以及用于构建该模型的设备规格的抽象程度。我们调查拟议的工具以确定整个领域目前的知识水平,并找出公开的问题。我们特别强调缺乏评价方法和衡量标准,以比较整个领域的建议的有效性。我们认为,我们的成果有助于那些希望使用自动渗漏探测和研究者在推进知识和改进自动渗漏探测方面感兴趣的人。