Factor graph is a graph representing the factorization of a probability distribution function, and has been utilized in many autonomous machine computing tasks, such as localization, tracking, planning and control etc. We are developing an architecture with the goal of using factor graph as a common abstraction for most, if not, all autonomous machine computing tasks. If successful, the architecture would provide a very simple interface of mapping autonomous machine functions to the underlying compute hardware. As a first step of such an attempt, this paper presents our most recent work of developing a factor graph accelerator for LiDAR-Inertial Odometry (LIO), an essential task in many autonomous machines, such as autonomous vehicles and mobile robots. By modeling LIO as a factor graph, the proposed accelerator not only supports multi-sensor fusion such as LiDAR, inertial measurement unit (IMU), GPS, etc., but solves the global optimization problem of robot navigation in batch or incremental modes. Our evaluation demonstrates that the proposed design significantly improves the real-time performance and energy efficiency of autonomous machine navigation systems. The initial success suggests the potential of generalizing the factor graph architecture as a common abstraction for autonomous machine computing, including tracking, planning, and control etc.
翻译:系数系数图形是一个代表概率分布函数要素化的图表,并被用于许多自主的机器计算任务,如本地化、跟踪、规划和控制等。我们正在开发一个建筑结构,目标是将系数图形作为大多数(如果不是所有)自动计算机计算任务的共同抽象。如果成功,该建筑将提供一个非常简单的界面,将自动机函数与基本计算硬件进行绘图。作为这一尝试的第一步,本文件介绍我们最近为LIDAR-Intertial Odosaty(LIO)开发一个因子图形加速器的工作,这是许多自主机器(如自主车辆和移动机器人)的一项基本任务。我们正在开发一个建筑,目标是将要素图形用作大多数(如果不是所有自动计算任务)的共同抽象的抽象。如果成功的话,拟议的加速器不仅支持诸如LIDAR、惯性测量单元(IMU)、全球定位系统等多种传感器的组合。作为这一尝试的第一步,本文件介绍了我们最近为开发一个因子图形加速器导航的全球性优化问题。我们的评估表明,拟议的设计大大改进了自动机器导航系统的实时性能和能源效率,例如自主汽车和移动机器人导航系统的能量效率。初步成功表明,包括将一个通用的机械图象学的追踪,并进行一般的图象学等的可能性。