Estimation of rigid transformation between two point clouds is a computationally challenging problem in vision-based relative navigation. Targeting a real-time navigation solution utilizing point-cloud and image registration algorithms, this paper develops high-performance avionics for power and resource constrained pose estimation framework. A Field-Programmable Gate Array (FPGA) based embedded architecture is developed to accelerate estimation of relative pose between the point-clouds, aided by image features that correspond to the individual point sets. At algorithmic level, the pose estimation method is an adaptation of Optimal Linear Attitude and Translation Estimator (OLTAE) for relative attitude and translation estimation. At the architecture level, the proposed embedded solution is a hardware/software co-design that evaluates the OLTAE computations on the bare-metal hardware for high-speed state estimation. The finite precision FPGA evaluation of the OLTAE algorithm is compared with a double-precision evaluation on MATLAB for performance analysis and error quantification. Implementation results of the proposed finite-precision OLTAE accelerator demonstrate the high-performance compute capabilities of the FPGA-based pose estimation while offering relative numerical errors below 7%.
翻译:在基于视觉的相对导航中,对两点云层之间的硬质变换进行估计是一个具有计算上挑战性的问题。在利用点球和图像登记算法对实时导航解决方案进行定位时,本文件开发了高性能电动和受资源制约的模拟框架。正在开发一个基于外地可配置门阵列(FPGA)的嵌入结构,以加速估算点阵形之间的相对构成。在算法层面,构成的估算方法是调整最佳线性姿态和翻译模拟器(OLTAE)的相对姿态和翻译估计。在结构层面,拟议的嵌入式解决方案是一个硬件/软件共同设计,用于评价用于高速估算的光金属硬件的计算。对OLTAE算法的有限精确性评估与基于双精确性评估的对业绩分析和误差量化进行比较。拟议的有限性定性线阵列内动动动动模拟器(OLTAAB)的落实结果,同时提供高性能缩缩算法(低于)的相对性能估测算能力。