Deep learning methods are becoming widely used for restoration of defects associated with fluorescence microscopy imaging. One of the major challenges in application of such methods is the availability of training data. In this work, we propose a unified method for reconstruction of multi-defect fluorescence microscopy images when training data is limited. Our approach consists of two stages: first, we perform data augmentation using Generative Adversarial Network (GAN) with conditional instance normalization (CIN); second, we train a conditional GAN (cGAN) on paired ground-truth and defected images to perform restoration. The experiments on three common types of imaging defects with different amounts of training data show that the proposed method gives comparable results or outperforms CARE, deblurGAN and CycleGAN in restored image quality when available data is limited.
翻译:深层学习方法正被广泛用于恢复与荧光显微镜成像有关的缺陷。应用这些方法的主要挑战之一是培训数据的可用性。在这项工作中,我们提出了在培训数据有限的情况下重建多功能荧光显微镜图像的统一方法。我们的方法分为两个阶段:首先,我们使用有条件的生成反影网络(GAN)进行数据增强工作,并有条件地使情况正常化(CIN);其次,我们用配对地面真象和有缺陷的图像培训有条件的GAN(cGAN)进行条件性GAN(cGAN),以进行修复。在三种常见的成像缺陷和不同数量的培训数据实验显示,在可用数据有限的情况下,拟议方法在恢复图像质量方面提供了可比较的结果或优于CARE、 deblurGAN和CycroGAN。