When designing variational autoencoders (VAEs) or other types of latent space models, the dimensionality of the latent space is typically defined upfront. In this process, it is possible that the number of dimensions is under- or overprovisioned for the application at hand. In case the dimensionality is not predefined, this parameter is usually determined using time- and resource-consuming cross-validation. For these reasons we have developed a technique to shrink the latent space dimensionality of VAEs automatically and on-the-fly during training using Generalized ELBO with Constrained Optimization (GECO) and the $L_0$-Augment-REINFORCE-Merge ($L_0$-ARM) gradient estimator. The GECO optimizer ensures that we are not violating a predefined upper bound on the reconstruction error. This paper presents the algorithmic details of our method along with experimental results on five different datasets. We find that our training procedure is stable and that the latent space can be pruned effectively without violating the GECO constraints.
翻译:在设计变异自动电解器或其他类型的潜伏空间模型时,潜伏空间的维度通常是在前面界定的。 在这一过程中,可能现有应用程序的维度数量不足或过多。如果未预先界定维度,则该参数通常使用耗时和资源的交叉校验来确定。出于这些原因,我们开发了一种技术,在培训期间,使用通用的通用电子升降机与控制优化(GEECO)和$_0-Augment-REINFORCE-Meorge (L_0$-ARM)梯度估计器来自动缩小VAE的潜伏空间维度。 GECO优化器确保我们不会违反重建错误上预先定义的上限。本文介绍了我们方法的算法细节以及五个不同数据集的实验结果。我们发现,我们的培训程序是稳定的,潜在空间可以在不违反GECO限制的情况下有效运行。