This paper presents the Fourier-Malliavin Volatility (FMVol) estimation library for MATLAB. This library includes functions that implement Fourier- Malliavin estimators (see Malliavin and Mancino (2002, 2009)) of the volatility and co-volatility of continuous stochastic volatility processes and second-order quantities, like the quarticity (the squared volatility), the volatility of volatility and the leverage (the covariance between changes in the process and changes in its volatility). The Fourier-Malliavin method is fully non-parametric, does not require equally-spaced observations and is robust to measurement errors, or noise, without any preliminary bias correction or pre-treatment of the observations. Further, in its multivariate version, it is intrinsically robust to irregular and asynchronous sampling. Although originally introduced for a specific application in financial econometrics, namely the estimation of asset volatilities, the Fourier-Malliavin method is a general method that can be applied whenever one is interested in reconstructing the latent volatility and second-order quantities of a continuous stochastic volatility process from discrete observations.


翻译:暂无翻译

0
下载
关闭预览

相关内容

MATLAB 是 Matrix Laboratory 的缩写,是一款由美国 MathWorks 公司出品的商业数学软件。是一种适用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年3月4日
Arxiv
15+阅读 · 2019年11月26日
A Multi-Objective Deep Reinforcement Learning Framework
Arxiv
12+阅读 · 2018年1月28日
Arxiv
13+阅读 · 2018年1月20日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
0+阅读 · 2024年3月4日
Arxiv
15+阅读 · 2019年11月26日
A Multi-Objective Deep Reinforcement Learning Framework
Arxiv
12+阅读 · 2018年1月28日
Arxiv
13+阅读 · 2018年1月20日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员