While modern society benefits from a range of technological advancements, it also is exposed to an ever-increasing set of cybersecurity threats. These affect all areas of life including business, government, and individuals. To complement technology solutions to this problem, it is crucial to understand more about cybercriminal perpetrators themselves, their use of technology, psychological aspects, and profiles. This is a topic that has received little socio-technical research emphasis in the technology community, has few concrete research findings, and is thus a prime area for development. The aim of this article is to explore cybercriminal activities and behavior from a psychology and human aspects perspective, through a series of notable case studies. We examine motivations, psychological and other interdisciplinary concepts as they may impact/influence cybercriminal activities. We expect this paper to be of value and particularly insightful for those studying technology, psychology, and criminology, with a focus on cybersecurity and cybercrime.


翻译:暂无翻译

0
下载
关闭预览

相关内容

医学人工智能AIM(Artificial Intelligence in Medicine)杂志发表了多学科领域的原创文章,涉及医学中的人工智能理论和实践,以医学为导向的人类生物学和卫生保健。医学中的人工智能可以被描述为与研究、项目和应用相关的科学学科,旨在通过基于知识或数据密集型的计算机解决方案支持基于决策的医疗任务,最终支持和改善人类护理提供者的性能。 官网地址:http://dblp.uni-trier.de/db/journals/artmed/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
30+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
11+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Evaluating LLMs for Privilege-Escalation Scenarios
Arxiv
0+阅读 · 2023年10月17日
Arxiv
0+阅读 · 2023年10月16日
Arxiv
0+阅读 · 2023年10月16日
Arxiv
10+阅读 · 2022年3月30日
On Feature Normalization and Data Augmentation
Arxiv
15+阅读 · 2020年2月25日
Arxiv
24+阅读 · 2019年11月24日
Arxiv
11+阅读 · 2019年4月15日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Evaluating LLMs for Privilege-Escalation Scenarios
Arxiv
0+阅读 · 2023年10月17日
Arxiv
0+阅读 · 2023年10月16日
Arxiv
0+阅读 · 2023年10月16日
Arxiv
10+阅读 · 2022年3月30日
On Feature Normalization and Data Augmentation
Arxiv
15+阅读 · 2020年2月25日
Arxiv
24+阅读 · 2019年11月24日
Arxiv
11+阅读 · 2019年4月15日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
11+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员