When training and evaluating machine learning models on a large number of tasks, it is important to not only look at average task accuracy -- which may be biased by easy or redundant tasks -- but also worst-case accuracy (i.e. the performance on the task with the lowest accuracy). In this work, we show how to use techniques from the distributionally robust optimization (DRO) literature to improve worst-case performance in multitask learning. We highlight several failure cases of DRO when applied off-the-shelf and present an improved method, Lookahead-DRO (L-DRO), which mitigates these issues. The core idea of L-DRO is to anticipate the interaction between tasks during training in order to choose a dynamic re-weighting of the various task losses, which will (i) lead to minimal worst-case loss and (ii) train on as many tasks as possible. After demonstrating the efficacy of L-DRO on a small controlled synthetic setting, we evaluate it on two realistic benchmarks: a multitask version of the CIFAR-100 image classification dataset and a large-scale multilingual language modeling experiment. Our empirical results show that L-DRO achieves a better trade-off between average and worst-case accuracy with little computational overhead compared to several strong baselines.


翻译:在对大量任务进行训练和评价机器学习模型时,重要的是不仅要审视平均任务准确性 -- -- 可能因简单或冗余任务而偏差 -- -- 而且还要审视最坏情况的准确性(即以最低精确度选择任务业绩的动态重新加权);在这项工作中,我们展示了如何使用分布式强优化(DRO)文献的技术来提高多任务学习中最坏情况的业绩。我们着重介绍了DRO在应用现成和提出改进方法(L-DRO)时的一些失败案例,Lookahead-DRO(L-DRO)可以减轻这些问题。L-DRO的核心思想是预测培训期间任务之间的相互作用,以便选择对各种任务损失进行动态的重新加权。在这个工作中,我们展示了L-DRO在小型控制合成环境中的效率,我们从两个现实的基准上评价了它:一个多任务版本的CIRFAR-100图像分类数据集(L-DRO-DRO)和一个大规模多语言模型实验。我们最差的实验结果显示,与LRO之间的平均交易和最强的间接计算结果显示,与LRO之间的最差的精确性。

0
下载
关闭预览

相关内容

机器学习系统设计系统评估标准
专知会员服务
88+阅读 · 2021年6月29日
【Google】监督对比学习,Supervised Contrastive Learning
专知会员服务
74+阅读 · 2020年4月24日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
Arxiv
7+阅读 · 2021年5月25日
Arxiv
5+阅读 · 2020年6月16日
Arxiv
4+阅读 · 2019年11月25日
Meta-Transfer Learning for Few-Shot Learning
Arxiv
4+阅读 · 2019年4月9日
Multi-task Deep Reinforcement Learning with PopArt
Arxiv
4+阅读 · 2018年9月12日
VIP会员
相关VIP内容
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
Top
微信扫码咨询专知VIP会员