Cable broadband networks are one of the few "last-mile" broadband technologies widely available in the U.S. Unfortunately, they have poor reliability after decades of deployment. The cable industry proposed a framework called Proactive Network Maintenance (PNM) to diagnose the cable networks. However, there is little public knowledge or systematic study on how to use these data to detect and localize cable network problems. Existing tools in the public domain have prohibitive high false-positive rates. In this paper, we propose CableMon, the first public-domain system that applies machine learning techniques to PNM data to improve the reliability of cable broadband networks. CableMon tackles two key challenges faced by cable ISPs: accurately detecting failures, and distinguishing whether a failure occurs within a network or at a subscriber's premise. CableMon uses statistical models to generate features from time series data and uses customer trouble tickets as hints to infer abnormal/failure thresholds for these generated features. Further, CableMon employs an unsupervised learning model to group cable devices sharing similar anomalous patterns and effectively identify impairments that occur inside a cable network and impairments occur at a subscriber's premise, as these two different faults require different types of technical personnel to repair them. We use eight months of PNM data and customer trouble tickets from an ISP and experimental deployment to evaluate CableMon's performance. Our evaluation results show that CableMon can effectively detect and distinguish failures from PNM data and outperforms existing public-domain tools.
翻译:暂无翻译