Deep learning approaches are nowadays ubiquitously used to tackle computer vision tasks such as semantic segmentation, requiring large datasets and substantial computational power. Continual learning for semantic segmentation (CSS) is an emerging trend that consists in updating an old model by sequentially adding new classes. However, continual learning methods are usually prone to catastrophic forgetting. This issue is further aggravated in CSS where, at each step, old classes from previous iterations are collapsed into the background. In this paper, we propose Local POD, a multi-scale pooling distillation scheme that preserves long- and short-range spatial relationships at feature level. Furthermore, we design an entropy-based pseudo-labelling of the background w.r.t. classes predicted by the old model to deal with background shift and avoid catastrophic forgetting of the old classes. Our approach, called PLOP, significantly outperforms state-of-the-art methods in existing CSS scenarios, as well as in newly proposed challenging benchmarks.
翻译:深层次的学习方法如今被普遍用于处理诸如语义分割等计算机视觉任务,这需要大量的数据集和大量的计算能力。 连续的语义分割( CSS) 是一个新兴趋势, 包括通过按顺序添加新类来更新旧模式。 但是, 持续学习的方法通常容易被灾难性地遗忘。 在 CSS 中, 这个问题更加严重, 在那里, 以往迭代的旧类在每一步都崩溃到背景中。 在本文中, 我们提出本地 POD, 是一个多尺度的集合蒸馏计划, 将长短距离空间关系保存在地物水平上。 此外, 我们设计了一种基于基于原模式预测的背景 w.r. t. 类的假标签, 以应对背景变化, 避免灾难性地忘记旧类。 我们的方法, 叫做 PLOP, 大大超越了现有 CSS 情景中的最新方法, 以及新提出的挑战性基准 。