Camera calibration is a necessity in various tasks including 3D reconstruction, hand-eye coordination for a robotic interaction, autonomous driving, etc. In this work we propose a novel method to predict extrinsic (baseline, pitch, and translation), intrinsic (focal length and principal point offset) parameters using an image pair. Unlike existing methods, instead of designing an end-to-end solution, we proposed a new representation that incorporates camera model equations as a neural network in multi-task learning framework. We estimate the desired parameters via novel camera projection loss (CPL) that uses the camera model neural network to reconstruct the 3D points and uses the reconstruction loss to estimate the camera parameters. To the best of our knowledge, ours is the first method to jointly estimate both the intrinsic and extrinsic parameters via a multi-task learning methodology that combines analytical equations in learning framework for the estimation of camera parameters. We also proposed a novel dataset using CARLA Simulator. Empirically, we demonstrate that our proposed approach achieves better performance with respect to both deep learning-based and traditional methods on 8 out of 10 parameters evaluated using both synthetic and real data. Our code and generated dataset are available at https://github.com/thanif/Camera-Calibration-through-Camera-Projection-Loss.
翻译:在这项工作中,我们提出了一种新颖的方法,用图像组合来预测外部(基线、投球和翻译)、内在(焦长和主点)参数。与现有方法不同,我们提出了一个新的表述方式,将相机模型方程式作为神经网络纳入多任务学习框架中。我们通过新相机投影损失(CPL)来估计所需的参数,利用相机模型神经网络来重建3D点,并利用重建损失来估计相机参数。我们最了解的是,我们是通过多种任务学习方法共同估计固有参数和外部参数的第一种方法,该方法将分析方程式结合到用于估计摄影参数的学习框架中。我们还提出了使用CARLA Simulator的新型数据集。我们很生动地展示了我们所提议的方法,在8个深度学习基础和传统方法方面都取得了更好的业绩,在10个参数中,我们用合成数据/真实数据来评估了我们提出的10个参数。