The task of Emotion-Cause Pair Extraction (ECPE) aims to extract all potential clause-pairs of emotions and their corresponding causes in a document. Unlike the more well-studied task of Emotion Cause Extraction (ECE), ECPE does not require the emotion clauses to be provided as annotations. Previous works on ECPE have either followed a multi-stage approach where emotion extraction, cause extraction, and pairing are done independently or use complex architectures to resolve its limitations. In this paper, we propose an end-to-end model for the ECPE task. Due to the unavailability of an English language ECPE corpus, we adapt the NTCIR-13 ECE corpus and establish a baseline for the ECPE task on this dataset. On this dataset, the proposed method produces significant performance improvements (~6.5 increase in F1 score) over the multi-stage approach and achieves comparable performance to the state-of-the-art methods.
翻译:情感-事业促进组织(ECPE)的任务旨在将情感及其相应原因的所有潜在条款-条款-条款-内容在文件中摘录出来。与情感-事业促进组织(ECE)研究得较多的任务不同,ECPE并不要求提供情感条款作为说明。以前关于ECPE的工作要么采用多阶段方法,即情感提取、导致提取和配对独立进行,要么使用复杂的结构来解决其局限性。在本文件中,我们提议为ECPE任务提出一个端对端模式。由于缺少英语的ECPE文,我们调整了NTCIR-13 ECE 文,并为ECPE任务确定了该数据集的基线。在这一数据集中,拟议的方法产生了与多阶段方法相比的显著绩效改进(F1分增加6.5分),并取得了与最新方法相似的业绩。