We introduce our method, conformal highest conditional density sets (CHCDS), that forms conformal prediction sets using existing estimated conditional highest density predictive regions. We prove the validity of the method and that conformal adjustment is negligible under some regularity conditions. In particular, if we correctly specify the underlying conditional density estimator, the conformal adjustment will be negligible. When the underlying model is incorrect, the conformal adjustment provides guaranteed nominal unconditional coverage. We compare the proposed method via simulation and a real data analysis to other existing methods. Our numerical results show that the flexibility of being able to use any existing conditional density estimation method is a large advantage for CHCDS compared to existing methods.
翻译:暂无翻译