A robotic network is a system with multiple robots connected by a communication network. Certain tasks that cannot be accomplished with available robotic resources are candidates for the use of cloud robotics, which overcomes the limitations of the robot network by adding to the network, either local or remote servers or cloud infrastructure, to aid in computational demanding tasks or storage. Previous studies have mainly focused on minimizing the cost of the robots in retrieving resources by knowing the resource allocation in advance. We develop a method for a robotic network cloud system that includes robots, fog and cloud nodes, to determine where each algorithm should be allocated so that the system achieves optimal performance, regardless of which robot initiates the request. We can find the minimum required memory for the robots and the optimal way to allocate the algorithms with the shortest time to complete each task. We experimentally compare our method with a state-of-the-art method, using real-world data, showing the improvements that can be obtained.
翻译:机器人网络是一个由通信网络连接多个机器人的系统。 某些无法用现有机器人资源完成的任务是云型机器人的候选用途。 云型机器人的候选用途是使用云型机器人,通过在网络中增加本地或远程服务器或云层基础设施,克服机器人网络的局限性,从而帮助完成计算要求任务或存储。 先前的研究主要侧重于通过事先了解资源分配,最大限度地降低机器人在检索资源方面的成本。 我们开发了机器人网络云系统的方法,其中包括机器人、雾和云节点,以确定每个算法应分配到何处,使系统达到最佳性能,而不管机器人是哪家机器人提出请求。 我们可以找到机器人所需的最起码的记忆,以及用最短的时间来分配算法完成每项任务的最佳方式。 我们实验性地将我们的方法与最先进的方法进行比较,使用真实世界的数据,显示可以取得的改进。