Modern high-dimensional point process data, especially those from neuroscience experiments, often involve observations from multiple conditions and/or experiments. Networks of interactions corresponding to these conditions are expected to share many edges, but also exhibit unique, condition-specific ones. However, the degree of similarity among the networks from different conditions is generally unknown. Existing approaches for multivariate point processes do not take these structures into account and do not provide inference for jointly estimated networks. To address these needs, we propose a joint estimation procedure for networks of high-dimensional point processes that incorporates easy-to-compute weights in order to data-adaptively encourage similarity between the estimated networks. We also propose a powerful hierarchical multiple testing procedure for edges of all estimated networks, which takes into account the data-driven similarity structure of the multi-experiment networks. Compared to conventional multiple testing procedures, our proposed procedure greatly reduces the number of tests and results in improved power, while tightly controlling the family-wise error rate. Unlike existing procedures, our method is also free of assumptions on dependency between tests, offers flexibility on p-values calculated along the hierarchy, and is robust to misspecification of the hierarchical structure. We verify our theoretical results via simulation studies and demonstrate the application of the proposed procedure using neuronal spike train data.


翻译:现代高维点进程数据,特别是来自神经科学实验的数据,往往涉及多种条件和/或实验的观测。与这些条件相对应的互动网络预计将共享许多边缘,但也呈现出独特的、特定条件。然而,不同条件下的网络的相似程度一般并不为人所知。现有的多变量点进程方法没有考虑到这些结构,也没有为联合估计网络提供推断。为了满足这些需要,我们提议了高维点进程网络的联合估计程序,这些网络包括容易计算重量,以便数据适应地鼓励估计的网络之间的相似性。我们还提议对所有估计网络的边缘采用强有力的等级多重测试程序,其中考虑到多探索网络的数据驱动相似性结构。与传统的多重测试程序相比,我们提议的程序大大减少了测试数量和结果的改进,同时严格控制了家庭错率。与现有的程序不同,我们的方法也不存在关于测试之间依赖性的假设,在按等级划分的pvalue上提供了灵活性,在所估算的网络的边缘上提供了强大的等级级级多重测试程序。我们还提议对所有估计网络的边缘提出强有力的等级性多重测试程序提出强有力的多重测试程序,并且用模拟的方式验证了我们提出的神经系统结构结构的错误分析结果。

0
下载
关闭预览

相关内容

专知会员服务
28+阅读 · 2021年8月2日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
3+阅读 · 2018年1月10日
VIP会员
相关VIP内容
专知会员服务
28+阅读 · 2021年8月2日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员