Neural Radiance Fields (NeRF) are able to reconstruct scenes with unprecedented fidelity, and various recent works have extended NeRF to handle dynamic scenes. A common approach to reconstruct such non-rigid scenes is through the use of a learned deformation field mapping from coordinates in each input image into a canonical template coordinate space. However, these deformation-based approaches struggle to model changes in topology, as topological changes require a discontinuity in the deformation field, but these deformation fields are necessarily continuous. We address this limitation by lifting NeRFs into a higher dimensional space, and by representing the 5D radiance field corresponding to each individual input image as a slice through this "hyper-space". Our method is inspired by level set methods, which model the evolution of surfaces as slices through a higher dimensional surface. We evaluate our method on two tasks: (i) interpolating smoothly between "moments", i.e., configurations of the scene, seen in the input images while maintaining visual plausibility, and (ii) novel-view synthesis at fixed moments. We show that our method, which we dub HyperNeRF, outperforms existing methods on both tasks. Compared to Nerfies, HyperNeRF reduces average error rates by 4.1% for interpolation and 8.6% for novel-view synthesis, as measured by LPIPS. Additional videos, results, and visualizations are available at https://hypernerf.github.io.
翻译:神经辐射场( NeRF) 能够以前所未有的忠诚重建场景, 而最近的各种工程也扩展了 NeRF, 以处理动态场景。 重建这种非硬化场景的一个常见方法是使用从每个输入图像的坐标学得的变形实地映射从每个输入图像的坐标到一个光学模板空间的协调空间。 但是,这些变形法在地形学模型的变化方面挣扎,因为地形学的变化要求变形场的不连续性,但这些变形场必然是连续的。 我们通过将 NERF 提升到更高维度空间, 代表每个单个输入图像的5D光亮场,作为切片。 我们的方法是由水平设定的方法所启发的, 将表面的演化作为切片通过更高度表面表面表面表面表面的模型。 我们评估我们的方法有两个任务:(i) 将“ 移动” 之间的“ 移动” (e) 场景的配置, 在输入图像中看到,同时保持视觉光度, 和(ii) 固定时刻的新型合成合成合成, 将5D光谱场场场场场场场场场景作为切片片片片片。 我们展示了方法, 将SlimFRBRB 和正平比 。