NLP-powered automatic question generation (QG) techniques carry great pedagogical potential of saving educators' time and benefiting student learning. Yet, QG systems have not been widely adopted in classrooms to date. In this work, we aim to pinpoint key impediments and investigate how to improve the usability of automatic QG techniques for educational purposes by understanding how instructors construct questions and identifying touch points to enhance the underlying NLP models. We perform an in-depth need finding study with 11 instructors across 7 different universities, and summarize their thought processes and needs when creating questions. While instructors show great interests in using NLP systems to support question design, none of them has used such tools in practice. They resort to multiple sources of information, ranging from domain knowledge to students' misconceptions, all of which missing from today's QG systems. We argue that building effective human-NLP collaborative QG systems that emphasize instructor control and explainability is imperative for real-world adoption. We call for QG systems to provide process-oriented support, use modular design, and handle diverse sources of input.
翻译:以NLP为动力的自动生成问题技术(QG)具有巨大的教学潜力,可以节省教育工作者的时间并有益于学生的学习。然而,到目前为止,在课堂上尚未广泛采用QG系统。我们致力于找出关键障碍并调查如何提高自动QG技术在教育目的上的可用性,方法是了解教官如何提出问题,并确定触摸点,以加强基本的NLP模式。我们与7所不同大学的11名教官进行了深入的搜索研究,并总结了他们在创建问题时的思考过程和需要。虽然教官对使用NLP系统支持问题设计表现出极大的兴趣,但实际上没有使用过这种工具。他们利用了多种信息来源,从域知识到学生的误解,这些都从今天的QG系统所缺少的。我们说,建立有效的人-NLP协作QG系统,强调教员的控制和解释能力,对于现实世界的采用十分必要。我们呼吁QG系统提供以过程为导向的支持,使用模块设计,并处理各种投入来源。