A full parametric and linear specification may be insufficient to capture complicated patterns in studies exploring complex features, such as those investigating age-related changes in brain functional abilities. Alternatively, a partially linear model (PLM) consisting of both parametric and non-parametric elements may have a better fit. This model has been widely applied in economics, environmental science, and biomedical studies. In this paper, we introduce a novel statistical inference framework that equips PLM with high estimation efficiency by effectively synthesizing summary information from external data into the main analysis. Such an integrative scheme is versatile in assimilating various types of reduced models from the external study. The proposed method is shown to be theoretically valid and numerically convenient, and it enjoys a high-efficiency gain compared to classic methods in PLM. Our method is further validated using UK Biobank data by evaluating the risk factors of brain imaging measures.
翻译:全面的参数和线性规格可能不足以捕捉探索复杂特征的研究的复杂模式,例如调查与年龄有关的大脑功能能力变化的研究。或者,由参数和非参数要素组成的部分线性模型(PLM)可能更合适。这一模型在经济学、环境科学和生物医学研究中广泛应用。在本文件中,我们引入了一个新的统计推论框架,通过将外部数据的摘要信息有效地综合到主要分析中,使PLM能够高估计效率。这种综合方法具有多种功能,可以同化外部研究中各种类型的减少的模型。拟议的方法在理论上是有效的,在数字上是方便的。与PLM的典型方法相比,它具有很高的效率。我们的方法通过评估脑成像测量的风险因素,用英国生物库数据进一步验证。</s>