Tiny machine learning (TinyML) has gained widespread popularity where machine learning (ML) is democratized on ubiquitous microcontrollers, processing sensor data everywhere in real-time. To manage TinyML in the industry, where mass deployment happens, we consider the hardware and software constraints, ranging from available onboard sensors and memory size to ML-model architectures and runtime platforms. However, Internet of Things (IoT) devices are typically tailored to specific tasks and are subject to heterogeneity and limited resources. Moreover, TinyML models have been developed with different structures and are often distributed without a clear understanding of their working principles, leading to a fragmented ecosystem. Considering these challenges, we propose a framework using Semantic Web technologies to enable the joint management of TinyML models and IoT devices at scale, from modeling information to discovering possible combinations and benchmarking, and eventually facilitate TinyML component exchange and reuse. We present an ontology (semantic schema) for neural network models aligned with the World Wide Web Consortium (W3C) Thing Description, which semantically describes IoT devices. Furthermore, a Knowledge Graph of 23 publicly available ML models and six IoT devices were used to demonstrate our concept in three case studies, and we shared the code and examples to enhance reproducibility: https://github.com/Haoyu-R/How-to-Manage-TinyML-at-Scale
翻译:当机器学习(TinyML)在无处不在的微控制器上实现民主化,实时处理各地的传感器数据时,机器学习(TinyML)已受到广泛欢迎,机器学习(TinyML)在机器学习(ML)民主化的地方得到了广泛的支持。为了在大规模部署的情况下管理该行业的小型ML,我们考虑硬件和软件方面的制约因素,从机载传感器和内存尺寸到ML模型和运行平台,从机载传感器和内存尺寸大小到ML模型和运行时平台;然而,Things(IoT)装置通常根据具体任务量身定制,并受到异质性和有限资源的影响。此外,TinyMLM模型是在不同结构中开发的,而且往往在没有明确理解其工作原则,导致生态系统支离破碎。考虑到这些挑战,我们提议了一个框架,利用SemmanyMLT网络技术使T模型和IMROT设备得以在规模上联合管理,从建模到发现可能的组合和基准,最终便利T组件的交换和再利用ML设备。 我们的数学/RO-RO-RO-RO-RO-real-real-reax-real 3 演示了I-reax-I-I-I-I-I-I-I-L 和M-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-L-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-S