This paper is concerned with the optimized Schwarz waveform relaxation method and Ventcel transmission conditions for the linear advection-diffusion equation. A mixed formulation is considered in which the flux variable represents both diffusive and advective flux, and Lagrange multipliers are introduced on the interfaces between nonoverlapping subdomains to handle tangential derivatives in the Ventcel conditions. A space-time interface problem is formulated and is solved iteratively. Each iteration involves the solution of time-dependent problems with Ventcel boundary conditions in the subdomains. The subdomain problems are discretized in space by a mixed hybrid finite element method based on the lowest-order Raviart-Thomas space and in time by the backward Euler method. The proposed algorithm is fully implicit and enables different time steps in the subdomains. Numerical results with discontinuous coefficients and various Pecl\'et numbers validate the accuracy of the method with nonconforming time grids and confirm the improved convergence properties of Ventcel conditions over Robin conditions.
翻译:本文涉及线性平反扩散方程式的优化Schwarz波形放松法和Ventcel传输条件。 考虑一种混合配方,其中通量变量代表 diffusive 和 advisive 通量, 并在不重叠的子域间界面中引入 Lagrange 乘数, 以处理Ventcel 条件中的相近衍生物。 空间- 时间界面问题被形成并被迭接解决。 每一次迭代都涉及对子域内Ventcel边界条件中的时间性问题的解决。 子多面体问题通过一种混合混合定数元素法在空间中分离, 以Raviart- Thomas 最低顺序为基础, 并及时采用落后的 Euler 方法。 提议的算法完全隐含, 并允许子域内不同时间步骤。 带有不连续系数和各种Pecl\'etet 序的数值的数值结果验证了该方法与不配置时间网格的准确性, 并证实在Robin 条件下改进了Ventcel 条件的趋同特性。