Sketching uses randomized Hash functions for dimensionality reduction and acceleration. The existing sketching methods, such as count sketch (CS), tensor sketch (TS), and higher-order count sketch (HCS), either suffer from low accuracy or slow speed in some tensor based applications. In this paper, the proposed fast count sketch (FCS) applies multiple shorter Hash functions based CS to the vector form of the input tensor, which is more accurate than TS since the spatial information of the input tensor can be preserved more sufficiently. When the input tensor admits CANDECOMP/PARAFAC decomposition (CPD), FCS can accelerate CS and HCS by using fast Fourier transform, which exhibits a computational complexity asymptotically identical to TS for low-order tensors. The effectiveness of FCS is validated by CPD, tensor regression network compression, and Kronecker product compression. Experimental results show its superior performance in terms of approximation accuracy and computational efficiency.
翻译:使用随机的散列函数来减少和加速度。 现有的草图方法, 如计数草图(CS)、 高压草图(TS) 和高顺序计数草图(HCS), 在某些以色调为基础的应用程序中, 要么是精度低或速度慢。 本文中, 拟议的快速计数草图(FCS) 将基于 CS 的多个较短的散列函数应用到输入振标的矢量形式上, 因为它比 TS 更精确, 因为输入振标的空间信息可以更充分地保存。 当输入振动器接收到 CANDECOMP/ PARAFAC 解体(CPD) 时, FCS 能够使用快速的 Fourier 变速加速 CS 和 HCS 加速 CS 。 这显示, 低序拉速的计算复杂性与 TS 相同。 FCS 的有效性得到了 CPD、 Exor 回归网络压缩 和 Kronecker 产品压缩的验证。 实验结果显示其在近似准确性和计算效率方面的优异性表现。