We consider decentralized consensus optimization when workers sample data from non-identical distributions and perform variable amounts of work due to slow nodes known as stragglers. The problem of non-identical distributions and the problem of variable amount of work have been previously studied separately. In our work we analyze them together under a unified system model. We study the convergence of the optimization algorithm when combining worker outputs under two heuristic methods: (1) weighting equally, and (2) weighting by the amount of work completed by each. We prove convergence of the two methods under perfect consensus, assuming straggler statistics are independent and identical across all workers for all iterations. Our numerical results show that under approximate consensus the second method outperforms the first method for both convex and non-convex objective functions. We make use of the theory on minimum variance unbiased estimator (MVUE) to evaluate the existence of an optimal method for combining worker outputs. While we conclude that neither of the two heuristic methods are optimal, we also show that an optimal method does not exist.
翻译:当工人对非同质分布的数据进行抽样时,我们考虑分散的共识优化;当工人对来自非同质分布的数据进行抽样,并由于被称为累赘者的慢节点而从事不同数量的工作时,我们考虑分散的共识优化;以前曾分别研究过非同质分布问题和可变工作量问题;在我们的工作中,我们根据统一的系统模型共同分析这些问题;我们在将工人产出结合到两种超标准方法中时,我们研究优化算法的趋同性:(1) 同等加权,和(2) 按每项完成的工作量加权;在完全协商一致的情况下,我们证明两种方法的趋同性一致,假设所有工人的累赘统计都是独立的,所有迭代数都是相同的。我们的数字结果显示,在大致一致的情况下,第二种方法优于第一种曲线和非对等客观功能的方法;我们利用最低差异不偏差估计器(MVUE)理论来评估是否存在一种最佳方法来综合工人产出。虽然我们的结论是这两种方法都不是最佳方法,但我们也表明,一种最佳方法并不存在。