Neuromorphic spike data, an upcoming modality with high temporal resolution, has shown promising potential in real-world applications due to its inherent advantage to overcome high-velocity motion blur. However, training the spike depth estimation network holds significant challenges in two aspects: sparse spatial information for dense regression tasks, and difficulties in achieving paired depth labels for temporally intensive spike streams. In this paper, we thus propose a cross-modality cross-domain (BiCross) framework to realize unsupervised spike depth estimation with the help of open-source RGB data. It first transfers cross-modality knowledge from source RGB to mediates simulated source spike data, then realizes cross-domain learning from simulated source spike to target spike data. Specifically, Coarse-to-Fine Knowledge Distillation (CFKD) is introduced to transfer cross-modality knowledge in global and pixel-level in the source domain, which complements sparse spike features by sufficient semantic knowledge of image features. We then propose Uncertainty Guided Teacher-Student (UGTS) method to realize cross-domain learning on spike target domain, ensuring domain-invariant global and pixel-level knowledge of teacher and student model through alignment and uncertainty guided depth selection measurement. To verify the effectiveness of BiCross, we conduct extensive experiments on three scenarios, including Synthetic to Real, Extreme Weather, and Scene Changing. The code and datasets will be released.
翻译:内分层峰值数据是即将推出的一种具有高时间分辨率的模式,在现实世界应用中显示出了充满希望的潜力,因为它具有克服高速运动模糊不清的内在优势。然而,培训尖刺深度估计网络在两个方面都面临重大挑战:密集回归任务的空间信息稀少,在为时间密集的峰值流建立对齐深度标签方面存在困难。在本文件中,我们提出了一个跨模式跨模式跨行业框架,以便在开放源代码 RGB 数据的帮助下实现不受监督的峰值深度估计。它首先将跨模式知识从源代码RGB传输到介质模拟源激增数据,然后实现从模拟源激增到目标峰值数据的交叉学习。具体地说,在源域将全球和像素级的跨模式知识传递到源域,通过对图像特征的足够语义性知识来补充稀薄的峰值深度估计。我们然后建议将“不确定性导师资-测试”(UGTS)到介质模拟源激增数据加热数据,然后实现目标域的跨模式、真实度测深度测深度的师级测算和师测深度测深度测测度的系统,确保全球域域测测测测测测测度的系统,以及师测测测测测测测测测测测度的三等的系统。